

Dossier de certification machine Tobeca

Dossier rédigé par Adrien Grelet de la SARL Tobeca

Projet concerné: 2016-TM-047 COSMED333 LVMH

Adrien Grelet
SARL Tobeca
10 boulevard de l'industrie
41100 VENDÔME

Sommaire

1. Introduction	3
1.1. Notes spéciales pour le lecteur	3
1.2. Organisme de certification	3
1.3. Présentation de l'équipement	3
1.4. Intervention et maintenance	
2. Vues d'ensemble du matériel et dimensions	5
3. Analyse des risques	6
3.1. Analyse	
3.2. Identification des risques	
3.3. Cas de l'écrasement selon l'axe X	
4. Sécurité machine	
4.1. Carters de protection	
4.2. Espacements minimum	
4.3. Redémarrage machine et sécurité fonctionnelle	
4.4. Condamnation des organes de coupure	
4.5. Ajout d'un disjoncteur ré amorçable à l'arrière	
5. Protection des équipements	
6. Dimensionnements électriques	
6.1. Consommations	
6.2. Sections et courants de coupure des éléments du primaire électrique	
6.3. Sections des consommateurs en courant continu	
6.4. Dimensionnement des fusibles	
6.5. Raccordement des connecteurs	
6.6. Identification des connecteurs	
7. Identifications mécaniques	
8. Schémas électriques et de câblage	
9. Identification des conducteurs électriques	

1. Introduction

1.1. Notes spéciales pour le lecteur

Cette documentation a été rédigée de manière uniformisée pour s'adapter au mieux à plusieurs types d'équipements conçus et fabriqués par Tobeca.

Par conséquence, certains éléments indiqués dans la documentation peuvent ne pas être applicables ou valides pour cet équipement en particulier.

C'est pourquoi la convention suivante a été retenue :

Tous les textes en rouge ne sont pas applicables pour cette version.

Par exemple dans la partie Identification des conducteurs électriques :

Phase régulateur enceinte	1	221	marron	1,5	
Neutre régulateur enceinte	1	222	Bleu clair	1,5	

Indique que les deux câbles pour le régulateur d'enceinte ne sont pas présents car il n'y a pas de régulateur d'enceinte de monté sur l'équipement.

Ce choix est délibéré est permet de ne pas perdre le fil, notamment sur les conventions de numérotation des câbles par exemple.

De plus, les schémas de câblage électriques peuvent avoir des parties génériques et présenter des équipements non présents.

Les tableaux des équipements et des conducteurs permettent de savoir quels équipements sont présents sur cette version.

1.2. Organisme de certification

Le présent équipement a été contrôlé et certifié par Bureau Veritas et plus particulièrement par M. Bruno Marchaterre.

La directive machine 2006/42/CE a été utilisée comme base de travail avec entre autres les normes harmonisées suivantes (qui ne sont pas les limitatives) :

- EN 60204-1 : 2006 Sécurité des machines Équipement Électrique des machines Partie 1 : Règles générales
- EN ISO 12100 : 2010 Sécurité des machines Principes généraux de conception Appréciation du risque et réduction du risque
- EN ISO 13857 : 2008 Sécurité des machines Distances de sécurité empêchant les membres supérieurs et inférieurs d'atteindre les zones dangereuses
- EN ISO 14120 : 2010 Sécurité des machines Protecteurs Prescriptions générales pour la conception et la construction des protecteurs fixes et mobiles.

1.3. Présentation de l'équipement

Cette machine est une machine disposant de 3 axes mécaniques pour les mouvements X, Y et Z et 4 axes

supplémentaires pour les gestion des extrusions.

Le chariot d'impression se déplace selon l'axe X.

Le chariot d'impression et l'axe X se déplacent selon l'axe Y.

Le plateau d'impression se déplace selon l'axe Z. L'axe Z est inversé, c'est à dire qu'un mouvement +Z le fait se déplacer vers le bas (les buses d'impression s'éloignent du plateau).

Tous les mouvements mécaniques de la machine s'effectuent avec des vitesses inférieures à 300 mm/s (blocage logiciel interne).

La vitesse maximale de l'axe Z est de 3mm/s (blocage logiciel interne).

L'équipement dispose de 4 portes seringue en Inox pouvant chauffer jusqu'à 80°C, qui sont montés sur le chariot d'impression.

La machine dispose de 4 portes en verre Securit trempé de 6mm, 2 portes à l'avant et 2 portes à l'arrière, entendu que les portes arrières servent pour les opérations d'entretien et de maintenance. Ces portes sont maintenues fermées grâce à des loqueteaux magnétiques.

Pour plus de détail sur les éléments fonctionnels de l'équipement, se référer aux vues d'ensemble du matériel et dimensions.

1.4. Intervention et maintenance

Toute intervention, démontage ou opération de maintenance sur l'équipement doit être réalisée par du personnel formé par Tobeca et habilité par lui.

En aucun cas le Client n'est autorisé à intervenir sauf dérogation écrite.

De plus, l'équipement intègre sur sa partie électrique une tôle de fermeture avec étiquette anti violation permettant de vérifier lors d'intervention si l'équipement n'a pas été ouvert de manière non autorisée.

En cas de dysfonctionnement, le Client doit impérativement condamner l'équipement au moyen d'un cadenas (non fourni par Tobeca) au niveau du sectionneur général cadenassable présent à l'arrière de l'équipement.

La tôle de l'armoire porte d'ailleurs ces deux étiquettes d'avertissement :

2. Vues d'ensemble du matériel et dimensions

Les vues d'ensemble du matériel sont disponibles en annexes suivantes :

Nom du document	Description
Vue Avant	Vue avant avec numérotation des éléments
Vue Arrière	Vue arrière avec numérotation des éléments
Vue Côtés	Vue des côtés avec numérotation des éléments
Vue Intérieure	Vue de l'intérieur machine avec numérotation des éléments

Tableau des éléments numérotés :

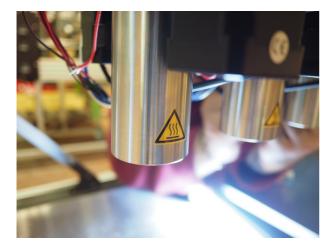
N°	Nom
1	Régulateur de température d'enceinte
2	Bouton poussoir de mise en marche
3	Bouton poussoir d'arrêt
4	Voyant de mise sous tension
5	Coup de poing d'arrêt d'urgence
6	Prise USB
7	Interrupteur éclairage d'enceinte
8	Interrupteur extraction d'enceinte
9	Écran tactile
10	Porte(s) avec poignée
11	Extrudeurs
12	Prise RJ45 de mise en réseau
13	Ventilateur général machine
14	Arrivée électrique
15	Sectionneur cadenassable
16	Sortie extraction enceinte
17	Chariot d'impression avec têtes d'impression
18	Plateau d'impression
19	Bac de purge
20	Radiateurs d'enceinte
21	Ventilation partie électrique
22	Extraction enceinte machine
23	Disjoncteur général
24	Fusibles

Révision : 1.0 du 29/03/2017 5/20

3. Analyse des risques

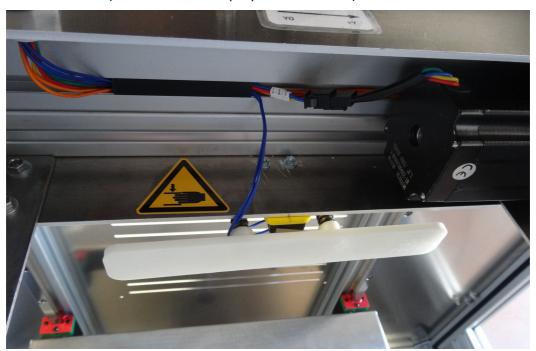
3.1. Analyse

Il existe plusieurs risques sur l'équipement qui doivent être identifiés clairement :


- Risque de brûlures sur plateau chauffant
- Risque de brûlures sur les corps chauffants des seringues et leur extrémité
- Risque électrique sur ouverture non autorisée du capot électrique
- Risque de pincement entre les buses et le plateau dans le cas d'une remontée de celui ci (cependant ce risque est minime et non indiqué sur le plateau, car la vitesse du plateau est très lente, maximum 3mm/s)
- Risque d'écrasement de la main sur les fins de course en Xmin et Xmax

3.2. Identification des risques

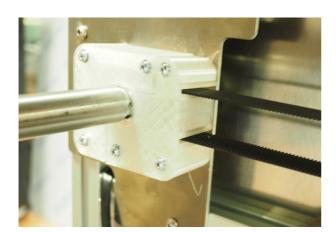
Les différents risques énoncés au point précédent sont clairement identifiés sur l'équipement avec des autocollants adéquats, placés aux bon endroits :



3.3. Cas de l'écrasement selon l'axe X

Pour l'axe X, au niveau des fins de course, les 120mm d'espace pour éviter un écrasement de la main ne sont pas respectés pour des raisons d'encombrement de la conception.

Il a donc été mis en place un système de barrières mécaniques permettant de couper l'alimentation générale en cas de contact (voir schéma électrique primaire sécurité).


4. Sécurité machine

4.1. Carters de protection

Les carters de protection sont en matière ABS de couleur blanc translucide et sont donc facilement visibles à

l'intérieur de la machine. La conception des carters a été faite en surdimensionnant les épaisseurs, afin de ne pas risquer une casse des pièces dans le cadre d'une utilisation normale, de fonctionnement ou de maintenance et entretien.

Leur maintien et fixation nécessite un tournevis Philips PZ1 ainsi qu'une clé plate hexagonale de 5.5mm ou alors une clé coudée hexagonale 3mm et clé plate hexagonale 8mm en fonction des carters considérés.

Les carters ne peuvent pas être démontés sans démontage d'autres parties de la machine, chose dans tous les cas interdite à toute personne ne faisant pas partie de Tobeca ou non mandatée par elle pour une intervention.

Une fois les carters démontés, les zones de travail pour les zones non protégées sont de au minimum de 300mm.

Les passages de courroies ont été réduits au minimum et la hauteur de la fente est de 3.5mm, en considérant une épaisseur de courroie de 1.5mm, soit 1mm d'espace de chaque côté.

Sur tous les éléments tournants, aucun élément n'est dépassant, afin d'empêcher tout risque de happement lors d'un mouvement de rotation.

4.2. Espacements minimum

Les portes de l'équipement ne disposent pas d'un système de sécurité d'ouverture, car par dérogation les opérateurs ont besoin de pouvoir intervenir sur l'équipement en cours de fonctionnement. Un arrêt de cycle en cas d'ouverture empêchant la bonne reprise du cycle par la suite, les opérateurs doivent pouvoir mettre les mains dans l'équipement en fonctionnement.

Donc, autour de toutes les zones mobiles, un espace de 120mm au moins a été prévu, pour empêcher tout écrasement de la main d'un opérateur.

En effet, la main est la seule partie d'un opérateur qui peut être mise dans l'équipement, il n'a donc pas été prévu de zones de sécurité avec minimum 300mm pour passage de la tête par exemple.

Il y a quelques exceptions sur les distances de 120mm comme :

- Zones de contact avec les interrupteurs de fin de course X, Y et Z (mais si un corps étranger était pris au niveau de cette zone de contact, le contact serait détecté et donc le mouvement arrêté)
- Bas du plateau d'impression sur plaque moteur du bas, là aussi jusqu'à contact avec l'interrupteur de fin de course (la course du plateau d'impression est cependant très faible, maximum 3mm/s)

4.3. Redémarrage machine et sécurité fonctionnelle

Un câblage d'auto maintien a été prévu sur l'équipement (voir schéma électrique primaire sécurité). Si l'arrêt d'urgence est appuyé, il doit nécessairement être enlevé et un appui sur le bouton poussoir de mise en marche est obligatoire pour redémarrer l'équipement.

4.4. Condamnation des organes de coupure

L'arrivée électrique de l'équipement est interrompue par un sectionneur cadenassable à l'arrière de l'équipement, coupant toute la source d'énergie sur l'équipement dans le cas d'une intervention.

4.5. Ajout d'un disjoncteur ré amorçable à l'arrière

Suite pré réception atelier, un disjoncteur de 16A a été ajouté à l'arrière de l'équipement afin de pouvoir protéger le matériel.

Il est accessible aux utilisateurs de l'équipement et peut être réamorcé avec la main :

5. Protection des équipements

L'équipement dispose, monté juste après le sectionneur d'un disjoncteur permettant de le protéger en cas de défaillance.

Aussi, pour protéger les sous ensembles tels que les alimentations à découpage et les éléments chauffants, des fusibles sont installés. Les dimensionnements sont détaillés plus bas.

6. Dimensionnements électriques

6.1. Consommations

Suivant la norme EN 60204-1, voici la liste détaillée des consommations maximum des éléments électriques sur l'équipement, ramenée sur 230V AC :

Élément	Consommation max en W
Alimentation 12V – 83A	1000
Alimentation 48V – 5A	240
Corps chauffants 12V (total pour les 4 sur l'équipement) – branchés sur alim 12V	320
Éclairage LED	8
Carte électronique	5
Ventilateur général	20
Ventilateurs 12V	8

Le total consommé sur l'arrivée électrique de l'équipement est donc de 1601 W soit moins de 7A.

6.2. Sections et courants de coupure des éléments du primaire électrique

Les câbles de l'arrivée électrique sont dimensionnés au calibre 1,5mm² tolérant jusqu'à 16A. Le détail des sections de câbles utilisées est indiqué dans le tableau d'identification des équipements .

Détail du dimensionnement des équipements présents sur l'équipement :

Élément	Courant de coupure max (A)
Prise électrique de raccordement	16
Sectionneur	32
Disjoncteur général	16
Contacteur de sécurité	20
Contacteur d'auto maintien	20
Relais statiques	40

6.3. Sections des consommateurs en courant continu

Élément Tension C	onso Conso	Section mini	Section choisie
-------------------	------------	--------------	-----------------

Révision : 1.0 du 29/03/2017 10/20

	(V)	(W)	(A)	calculée (mm²)	(mm²)
Résistance chauffante	12	80	7	0,65	1,5
LEDs	12	4	0,33	0,02	0,25
Driver externe de moteur	48	200	4,2	0,06	0,75
Carte RAMPS	12	160	13	1,22	1,5
Ventilateurs de pièces	12	8	0,66	0,03	0,25

6.4. Dimensionnement des fusibles

Fusible	Monté sur	Courant max	Calibre retenu
F1	AL12	4,35A	8A
F2	AL48	1,04A	2A
F3	R1 + R2		
F4	R3		

6.5. Raccordement des connecteurs

Tous les connecteurs sont terminés par des cosses serties. Ce sont seulement des cosses à un pôle, pas de cosses à deux pôles ou plus ne sont utilisées.

Les bornes sont pontées au maximum par 2 connecteurs de même section.

Les borniers de distribution et de raccordement sont des borniers à verrouillage type Wago pour câbles entre 0,75mm² et 1,5mm². Il n'y a pas de borne sertie pour les raccordements dans les borniers Wago, conformément aux recommandations du fabricant.

6.6. Identification des connecteurs

Les connecteurs sont tous identifiés par des colliers souples numérotés avec un n° à 3 chiffres et avec la convention suivante à chaque extrémité visible :

1xx : connecteurs sur tension de 12V continue

2xx: connecteurs sur tension de 230V alternatif

3xx : connecteurs sur tension de signaux électroniques

• 4xx : connecteurs sur tension de 48V continue

7. Identifications mécaniques

Les axes X, Y et Z sont identifiés sur l'équipement avec des étiquettes inaltérables, ainsi que le sens de déplacement positif de chaque axe.

Le point d'origine cartésien est identifié à côté du coin avant gauche du plateau d'impression (X et Y).

8. Schémas électriques et de câblage

Tous les schémas électriques et de câblage sont disponibles dans les annexes suivantes :

Nom du document	Description
Schéma électrique primaire sécurité	Schéma de la partie électrique du sectionneur général de la machine jusqu'aux borniers de distribution de la Basse Tension
Schéma électrique basse tension	Schéma de tous les équipements raccordés en Basse Tension
Schéma électrique 12V	Schéma de tous les équipements raccordés sur le secondaire de l'alimentation 12V
Schéma électrique 48V	Schéma de tous les équipements raccordés sur le secondaire de l'alimentation 48V
Schéma E/S	Schéma de la partie électronique et de tous les équipements envoyant ou recevant des signaux E/S
Schéma driver externe	Plan de raccordement des drivers externes

Tableau des équipements électriques présents dans les schémas :

Nom	Description
Q1	Sectionneur général cadenassable
Q2	Disjoncteur général
F1	Fusible de protection sur AL12
F2	Fusible de protection sur AL48
F3	Fusible de protection sur R1 et R2
F4	Fusible de protection sur R3
S1	Bouton d'arrêt d'urgence (NC)
S2	Bouton poussoir de mise en marche (NO)
S3	Bouton poussoir d'arrêt (NC)
S4	Interrupteur pour éclairage intérieur
S5	Interrupteur pour extraction d'air
KA1	Contacteur de puissance sur S1
KA2	Contacteur d'auto maintien fonctionnement
E1	Voyant de mise sous tension
FI	Filtre d'entrée de ligne antiparasite
AL12	Alimentation 12V
AL48	Alimentation 48V
REG	Régulateur de température d'enceinte machine
K1	Relais statique chauffage enceinte
K2	Relais statique chauffage plateau

Révision : 1.0 du 29/03/2017 13/20

E2	Lampe LED enceinte
E3	Lampe LED enceinte
R1	Résistance chauffante d'enceinte
R2	Résistance chauffante d'enceinte
R3	Résistance(s) de chauffe plateau
R4	Résistances de chauffe tête 0
R5	Résistances de chauffe tête 1
R6	Résistances de chauffe tête 2
R7	Résistances de chauffe tête 3
M1	Ventilateur général machine
M2	Ventilateurs d'extraction
M3	Pompe à eau
M4	Ventilateurs de tête d'impression
M5	Ventilateurs de pièce
MX	Moteur de déplacement X
MY	Moteur de déplacement Y
MZ1	Moteur de déplacement Z
MZ2	Moteur de déplacement Z
ME0	Moteur d'extrusion 0
ME1	Moteur d'extrusion 1
ME2	Moteur d'extrusion 2
ME3	Moteur d'extrusion 3
DRX	Driver de pilotage moteur X
DRY	Driver de pilotage moteur Y
DRZ	Driver de pilotage moteurs Z
DREO	Driver de pilotage moteur extrusion 0
DRE1	Driver de pilotage moteur extrusion 1
DRE2	Driver de pilotage moteur extrusion 2
DRE3	Driver de pilotage moteur extrusion 3
RAMPS	Carte électronique de pilotage machine
RPI	Serveur de pilotage machine
ECR	Ecran pour serveur de pilotage machine
S6	Interrupteur fin de course Xmin
S7	Interrupteur fin de course Xmax
S8	Interrupteur fin de course Ymin
S9	Interrupteur fin de course Ymax

Révision : 1.0 du 29/03/2017 14/20

S10	Interrupteur fin de course Zmin
S11	Interrupteur fin de course Zmax
ТО	Thermistance 0
T1	Thermistance 1
T2	Thermistance 2
Т3	Thermistance 3
CHAEXT	Carte additionnelle pour chauffe externe de 2 extrudeurs
К3	Relais double sortie 12V avec pilotage 5V
S12	Contact de sécurité barrière Xmin
S13	Contact de sécurité barrière Xmax

9. Identification des conducteurs électriques

Description	Fils	Identification	Couleurs	mm²	Notes
	•	Partie basse tensio	n 230V AC		
Phase disjoncteur → KA1-1	1	201	marron	1,5	
Neutre disjoncteur → KA1-3	1	203	Bleu clair	1,5	
$S1 \rightarrow KA1-A1$	1	204	marron	1,5	
KA1-A2 → Neutre sectionneur	1	205	Bleu clair	1,5	Ponté sur KA1-2
Phase sectionneur → S2	1	206	marron	1,5	Ponté sur KA1-1
KA1-2 → KA2-1	1	207	marron	1,5	
KA1-4 → KA2-3	1	208	Bleu clair	1,5	
KA1-4 → KA2-A1	1	209	Bleu clair	1,5	
KA2-A2 → S3	1	210	marron	1,5	
S3 → S2	1	211	marron	1,5	
KA2-3 → S2	1	212	marron	1,5	
KA2-2 → Phase filtre	1	213	marron	1,5	
KA2-4 → Neutre filtre	1	214	Bleu clair	1,5	
Phase filtre → Bornier phase	1	215	marron	1,5	
Neutre filtre → Bornier neutre	1	216	Bleu clair	1,5	
Phase alim 12V	1	217	marron	1,5	
Neutre alim 12V	1	218	Bleu clair	1,5	
Phase alim 48V	1	219	marron	1,5	
Neutre alim 48V	1	220	Bleu clair	1,5	
Phase régulateur enceinte	1	221	marron	1,5	
Neutre régulateur enceinte	1	222	Bleu clair	1,5	
Phase bornier \rightarrow relais enceinte 1	1	223	marron	1,5	
Relais enceinte 2 → phase résistances	1	224	marron	1,5	
Neutre chauffage enceinte \rightarrow neutre bornier	1	225	Bleu clair	1,5	
Phase bornier → relais plateau 1	1	226	marron	1,5	
Relais plateau 2 → phase plateau(x)	1	227	marron	1,5	
Neutre plateau(x) \rightarrow neutre bornier	1	228	Bleu clair	1,5	
Phase alim serveur	1	229	marron	1,5	
Neutre alim serveur	1	230	Bleu clair	1,5	
Phase ventilateur général	1	231	marron	1,5	

Révision : 1.0 du 29/03/2017 16/20

Neutre ventilateur général	1	232	Bleu clair	1,5	
Phase pompe à eau	1	233	marron	1,5	
Neutre pompe à eau	1	234	Bleu clair	1,5	
Neutre sectionneur → disjoncteur	1	235	marron	1,5	
Phase sectionneur → disjoncteur	1	236	Bleu clair	1,5	
	•	Partie 12V I	OC .		
Alim RAMPS +12V #1	1	101	Bleu foncé	0,75	
Alim RAMPS 0V #1	1	102	Bleu foncé, liseré blanc	0,75	
Alim RAMPS +12V #2	1	103	Bleu foncé	0,75	
Alim RAMPS 0V #2	1	104	Bleu foncé, liseré blanc	0,75	
LEDs +12V #1	1	105	Bleu foncé	0,25	
LEDs 0V #1	1	106	Bleu foncé, liseré blanc	0,25	
LEDs +12V #2	1	107	Bleu foncé	0,25	
LEDs OV #2	1	108	Bleu foncé, liseré blanc	0,25	
Ventilateur tête +12V	1	109	Bleu foncé	0,25	
Ventilateur tête 0V	1	110	Bleu foncé, liseré blanc	0,25	
Ventilateur de pièce +12V	1	111	Bleu foncé	0,25	
Ventilateur de pièce 0V	1	112	Bleu foncé, liseré blanc	0,25	
Résistance E0 +12V	1	113	Bleu foncé	1,5	
Résistance E0 0V	1	114	Bleu foncé, liseré blanc	1,5	
Résistance E1 +12V	1	115	Bleu foncé	1,5	
Résistance E1 0V	1	116	Bleu foncé, liseré blanc	1,5	
Résistance E2 +12V	1	117	Bleu foncé	1,5	
Résistance E2 0V	1	118	Bleu foncé, liseré blanc	1,5	
Résistance E3 +12V	1	119	Bleu foncé	1,5	
Résistance E3 0V	1	120	Bleu foncé, liseré blanc	1,5	
Voyant marche +12V	1	121	Bleu foncé	0,25	
Voyant marche 0V	1	122	Bleu foncé, liseré blanc	0,25	
Ventilateurs extraction +12V	1	123	Bleu foncé	0,25	
Ventilateurs extraction 0V	1	124	Bleu foncé, liseré blanc	0,25	
Signal chauffe plateau +12V	1	125	Bleu foncé	0,25	
Signal chauffe plateau OV	1	126	Bleu foncé, liseré blanc	0,25	AL12
AL12 +12V → S4	1	127	Bleu foncé	0,25	
Alim CHAEXT +12V	1	128	Bleu foncé	1,5	
Alim CHAEXT OV	1	129	Bleu foncé, liseré blanc	1,5	
Alim K3 +12V	1	130	Bleu foncé	1,5	
	-	•		*	

Révision : 1.0 du 29/03/2017 17/20

Alim K3 0V	1	131	Bleu foncé, liseré blanc	1,5	
Sortie +12V n°1 de K3	1	132	Bleu foncé	0,25	
Sortie 0V n°1 de K3	1	133	Bleu foncé, liseré blanc	0,25	
Sortie +12V n°2de K3	1	134	Bleu foncé	0,25	
Sortie 0V n°2 de K3	1	135	Bleu foncé, liseré blanc	0,25	
Alim S12 +12V	1	136	Bleu foncé	0,25	
S12 → S13	1	137	Bleu foncé	0,25	
S13 → K4-3	1	138	Bleu foncé	0,25	
Alim K4-4 0V	1	139	Bleu foncé, liseré blanc	0,25	
		Partie 48V I	oc .		
Alim driver moteur X +48V	1	401	Bleu foncé	0,75	
Alim driver moteur X 0V	1	402	Bleu foncé, liseré blanc	0,75	
Alim driver moteur Y +48V	1	403	Bleu foncé	0,75	
Alim driver moteur Y 0V	1	404	Bleu foncé, liseré blanc	0,75	
Alim driver moteur Z +48V	1	405	Bleu foncé	0,75	
Alim driver moteur Z 0V	1	406	Bleu foncé, liseré blanc	0,75	
Alim driver moteur E0 +48V	1	407	Bleu foncé	0,75	
Alim driver moteur E0 0V	1	408	Bleu foncé, liseré blanc	0,75	
Alim driver moteur E1 +48V	1	409	Bleu foncé	0,75	
Alim driver moteur E1 0V	1	410	Bleu foncé, liseré blanc	0,75	
		Partie signaux de	pilotage		
Endstop X min	2	301	Orange	0,25	
Endstop X max	2	302	Jaune	0,25	
Endstop Y min	2	303	Violet	0,25	
Endstop Y max	2	304	Vert	0,25	
Endstop Z min	2	305	Bleu	0,25	
Endstop Z max	2	306	Marron	0,25	
Thermistance E0	2	307	Couleurs fabricant	0,25	Section fabricant
Thermistance E1	2	308	Couleurs fabricant	0,25	Section fabricant
Thermistance E2	2	309	Couleurs fabricant	0,25	Section fabricant
Thermistance E3	2	310	Couleurs fabricant	0,25	Section fabricant
Moteur X	4	311	Couleurs fabricant	NA	Section fabricant
Moteur Y	4	312	Couleurs fabricant	NA	Section fabricant
Moteur Z	4	313	Couleurs fabricant	NA	Section fabricant
Moteur Z	4	356	Couleurs fabricant	NA	Section fabricant
Moteur E0	4	314	Couleurs fabricant	NA	Section fabricant

Révision : 1.0 du 29/03/2017 18/20

Moteur E1	4	315	Couleurs fabricant	NA	Section fabricant
Moteur E2	4	352	Couleurs fabricant	NA	Section fabricant
Moteur E3	4	353	Couleurs fabricant	NA	Section fabricant
Signal DIR axe X	1	316	Orange	0,25	
Signal STEP axe X	1	317	Violet	0,25	
Signal EN axe X	1	318	Bleu	0,25	
Signal +5V axe X	1	319	Rouge	0,25	
Signal DIR axe Y	1	320	Orange	0,25	
Signal STEP axe Y	1	321	Violet	0,25	
Signal EN axe Y	1	322	Bleu	0,25	
Signal +5V axe Y	1	323	Rouge	0,25	
Signal DIR axe Z	1	324	Orange	0,25	
Signal STEP axe Z	1	325	Violet	0,25	
Signal EN axe Z	1	326	Bleu	0,25	
Signal +5V axe Z	1	327	Rouge	0,25	
Signal DIR axe E0	1	328	Orange	0,25	
Signal STEP axe E0	1	329	Violet	0,25	
Signal EN axe E0	1	330	Bleu	0,25	
Signal +5V axe E0	1	331	Rouge	0,25	
Signal DIR axe E1	1	332	Orange	0,25	
Signal STEP axe E1	1	333	Violet	0,25	
Signal EN axe E1	1	334	Bleu	0,25	
Signal +5V axe E1	1	335	Rouge	0,25	
Sonde de température enceinte	2	336	Couleur fabricant	NA	Section fabricant
Signal + régulateur enceinte	1	337	Rouge	0,25	
Signal - régulateur enceinte	1	355	Noir	0,25	
+5V RAMPS	1	338	Rouge	0,25	
OV RAMPS	1	339	Noir	0,25	
Signal chauffe E2	1	340	Jaune	0,25	
Signal chauffe E3	1	341	Vert	0,25	
Retour T2	1	342	Marron	0,25	
Retour T3	1	343	Noir	0,25	
Signal DIR axe E2	1	344	Orange	0,25	
Signal STEP axe E2	1	345	Violet	0,25	
Signal EN axe E2	1	346	Bleu	0,25	
Signal +5V axe E2 et E3	1	347	Rouge	0,25	

Révision : 1.0 du 29/03/2017 19/20

Signal DIR axe E3	1	348	Orange	0,25	
Signal STEP axe E3	1	349	Violet	0,25	
Signal EN axe E3	1	350	Bleu	0,25	
Signal +5V n°1 K3	1	351	Rouge	0,25	Pin D57 RAMPS
Signal OV n°1 K3	1	352	Noir	0,25	GND RAMPS
Signal +5V n°2 K3	1	353	Jaune	0,25	Pin D1 RAMPS
Signal OV n°2 K3	1	354	Noir	0,25	GND RAMPS
Déjà affecté		355			Déjà affecté
Déjà affecté		356			Déjà affecté